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Numerical approximations are studied for a large hyperbolic system coupled to a parabolic 
equation and a system of algebraic equations. The equations, which all are nonlinear, 
describe nonviscous compressible one-dimensional gas flow in a catalytic converter. 
Chemical reactions within the gas are included in the model. Well-posedneas of the partial 
differential equations is analyzed together with stability of the numerical models. In par- 
ticular an investigation is made of the effect of numerical dissipation and different boundary 
conditions. Numerical results are presented. 

1. INTRODUCTION 

In this paper difference methods for solving a system of time dependent partial 
differential equations are studied. A thorough analysis is presented for a class of 
systems with application to a specific problem for a catalytic converter. The analysis 
and the numerical experiments include some new results, of both a practical and a 
theoretical nature. 

The mathematical model describes nonviscous compressible gas flow in one 
spatial dimension. The gas consists of several components, which react chemically 
with each other. The interaction between the temperature of the gas and the 
surrounding material is contained in the model. Mathematically this is a system of 
nonlinear partial differential equations coupled to a system of algebraic equations. 
The differential equations consist of a large hyperbolic system and a parabolic 
equation. The upper part of the hyperbolic system (the first three equations) contains 
a general fluid dynamic model [l, Chap. I], and appears in a large number of applica- 
tions. The lower part governs the concentrations of the different gas components and 
has a principal part on diagonal form. The parabolic equation describes the heat 
conduction in the surrounding material. 

The hyperbolicity is shown in Section 2. This property is not obvious since there 
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are multiple characteristics in the linearized system. Several ways of stating the 
boundary conditions to get a well-posed problem are demonstrated. From this 
analysis one can also exclude boundary conditions which might look physically 
reasonable. 

The hyperbolic system is approximated by the Leap-Frog difference scheme 
[6, Chap. 51 with a fourth-order dissipative term [5, Chap. 91. The Du Fort-Frankel 
scheme [6, Chap. 71 is used for the parabolic equation. Both schemes are explicit and 
of second-order accuracy. The nonlinear algebraic equations are solved by a modified 
version of Newton’s method. 

The stability analysis presented is relevant for many other applications. In 
particular, the importance of formulating the numerical boundary conditions is 
pointed out. For the Leap-Frog scheme it is necessary to give more boundary condi- 
tions than for the differential equations. A number of different conditions are analyzed 
using the theory in [4]. In order to get a sufficient number of conditions at 
the boundary we use special difference approximations of the differential equations. 
It is interesting to note that for the lower diagonal part of the hyperbolic equations 
the time derivative must be approximated by forward time differences, while for the 
upper part centered time differences should be used. The natural centered difference 
approximations at the boundaries for the parabolic equation are ,proved to be stable 
in the sense of Varah [8]. 

Different ways of speeding up the scheme for special applications are presented. 
The final version is 20 times faster than the original one. This effect is obtained mainly 
by using different time steps for different differential equations and by approximating 
the original functions, contained in the system, by simpler ones. 

In certain cases the lower order terms in the differential equations make the system 
stiff. The difference scheme must then be modified such that these terms are treated 
implicitly. This technique is applied to the faster version and numerical results are 
also given. 

In Section 4 we give results of numerical experiments for different boundary 
conditions, dissipation coefficients, and step sizes, e.g., the necessity of a special 
dissipation term at the boundary is shown. 

The methods described here gives an accurate representation even of fast moving 
phenomena like sound waves. In some cases the solution is wanted for longer periods 
of time t, and then the method is too slow. 

One way to increase the speed is to use a fully implicit method without any stability 
restriction on the time step. In this case it is not possible to describe the solution in 
full detail, i.e., fast varying components like sound waves cannot be well represented. 
However, these components can be small and the solution might be reasonable 
anyway. 

Another way to speed up the computation is to change the mathematical model 
such that the fast varying components do not appear. This can be done by setting 
some time derivatives equal to zero. Further work along these lines is under way. 
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2. THE DIFFERENTIAL EQUATIONS 

The model consists of a hyperbolic system with N + 3 equations where N is the 
number of different components of the gas mixture. To this system are coupled one 
parabolic differential equation and N nonlinear algebraic equations. (In our applica- 
tion the number N equals 9.) 

We list here the physical significance of the independent and dependent variables: 

t = time t 3 0; 
x = space variable 0 < x < L; 

p = density of the gas mixture; 
w = flow speed of the gas mixture; 
T = temperature of the gas mixture; 

Yi = pi/p where pi is the density of the i th component of the gas; 
T, = temperature of the solid; 
pi8 = density of the gas components in the solid. 

The mathematical model is 

.z g + & (pwg = 0, 

aw p(t$hv~ 
1 

ap 
= -E2-$f2, 

3X 

(2.1) 
i=l N, >**a, 

SC = 0, i=l N. ,-.., 

Here p = RpT C& (YJW,); R and Wi are constants; C, = C,(T), a = a(T,); E is a 
constant; fi and gi are functions of the dependent variables. 

The explicit form of the rather complicated functions C, , a, h , and gi which are 
used in our application is given in [3, Sect. 51. 

To make the analysis applicable to more general systems, we rewrite the equations 
in the following form: 

% = 4u, + By, + Fl ; (2.2a) 

yt =A,Y,+ F2; (2.2b) 
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vt = au,, f F3 ; 
G = 0, 

u = (P, w, UT, Y = (Yl ,***, YNY, c = T, , 

FI = (fi Ji AY, 4 = (f4 >...,.LN+#, F3 = f~+a 

(Ur denotes the transpose of a vector U), 

A, = - 

i 

11’ 
- 

E 

CP 
2 P 

0 

al2 0 
d a23 T 

a32 d i 

G = GM V, r> = (& ,..., gNjT; u = (u, yy; r = (f,s 9”‘) PNX; 

p=/l(T,y)= T~+G&$. 
z 

We will also use the following further simplified form: 

Ut = AU,+F; 

vt = au,, f F3 ; 

G = 0; 

U= (;); F= (2); A = (“,I i2). 

(2.2c) 

(2.2d) 

(2.3) 

The values of LJ and v for t = 0, 0 < x < L are given as initial conditions. 
It is not physically obvious which types of boundary conditions can be given at 

x = 0 and x = L (t > 0). We will investigate which conditions lead to well-posed 
problems. 
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2.1. Well-posedness of the Equations 

We mean by well-posedness that the &-norm1 of the solution of the linearized 
version of the equations can be estimated by the inhomogeneous terms in the dif- 
ferential equations and in the initial and boundary conditions. Since small perturba- 
tions of the solution, e.g., errors in the calculation, are governed by these linear 
equations (the variation equations), it is essential that their solution not grow too 
rapidly. 

The unknown r can first be eliminated from the system by solving the equations 
G = 0. 

We linearize the equations, neglect lower order terms, and regard A and a as 
constant. That is, we will study the system: 

U, = AU,, (2.4a) 

vt = au,, . (2.4b) 

The transformations we will introduce later can also be used with the energy integral 
method for variable coefficients. 

Let us consider Eq. (2.4a) The first question is whether the system is hyperbolic. 
We must check if A has real eigenvalues. 

A, has the three eigenvalues 

A, = d ( M -10 in our application), 
A, = d - (a,,azI + a,3a3,)1/2 ( = -400 in our application), 

X3 = d + (a12a21 + a2sa22)1’2 ( w 400 in our application), 

and A, has N eigenvalues equal to d. 
By definition ai all are negative, hence the eigenvalues are real. We want, however, 

strong hyperbolicity; i.e., that lower order terms cannot destroy the well-posedness 
(see [7]). In our case some eigenvalues are multiple. We need therefore to construct a 
symmetrizer S for the matrix A such that: 

(SAS-l)= = SAS-I. 

Let S have the partitioned form 

S = (f y)ci f) (1 is the identity matrix), 

SAS-1 = ( 
DA,D-* D(B + QA2 - AIQ) 

0 A2 1. 

Choose the 3 x 3-matrix D = diag (4 , 1, dJ such that DA,D-l = A1 is symmetric. 

1 The &norm of the vector valued function U is 11 U [] = ut U(x, t)W(x, t) dr)ll*. 
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d 
A1 = a,,d,-l 

0 

where a, = -(a,,~~~)~~~ and a, = -(cz,,cz,,)~/~ if dI = (a21/al,)1/z and d, = (LZ,~/U,,)~/~. 
We further want D(B + QA, - AIQ) = 0, i.e., 

B+QA,-&Q=B+(dI-AI)Q=O. 

The matrix (a - A,) is not invertible but despite this we can find a suitable Q since B 
is in the column space of A, 

These calculations tell us that the system (2.4a) can be symmetrized and therefore it 
is strongly well posed. 

Equation (2.4b) is of standard parabolic type in our application since the coefficient 
a is positive. Hence it is also well posed as an initial value problem. 

2.2. Well-posedness of the Boundary Conditions 

Let us first study the hyperbolic part. To analyze its boundary conditions we go a bit 
further and diagonalize the symmetric AI with the transformation M&Sf-l: 

where c = (az2 + aSs)l12. 
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The characteristic quantities in the hyperbolic system /1, ,..., -‘ln+s , i.e., the depen- 
dent variables in the diagonalized system, are related to p, W, T, and Yi in the following 
way: 

p1=f, 1 pz= -2, P3= -2, p4= -2. 

Since the problem is subsonic, X, is positive. Therefore, the boundary conditions for 
the diagonalized system that give well-posed problems are of the following well-known 
form, see, e.g., [5, p 651 or [4]. For x = 0, t 3 0 

4 = WJ + Al 9 

-4 = w& + A, 3 (2.5) 

ni = s#43 + hi , i = 4,..., N. 

For x = L, t > 0 

(2.6) 

Here sij and hi are functions of t. This means that the value of the components 
corresponding to characteristics that go into the region from the boundary are given. 
It is now easy to check whether a certain setting of boundary conditions for p, w, T, 
and Yi after transformation have the form (2.5), (2.6). 

Let us note two consequences. There must be N + 2 boundary conditions at x = 0 
and one at x = L. For example, it is not possible to give values to all dependent 
variables at the inflow boundary x = 0. The other consequence is that Yi (= A,,,) 
should be given at x = 0. 

At the outflow boundary we specify p = RpT Cy=, Y,/ Wi and solve for T or p. 
That is 

T = P,/(, : Yii Wg) 
i=l 

(2.7a) 
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Of 

p=p 

For the analysis we study the linearized form 

. (2.7b) 

or 

T=t,+hp+ fti+,Y, 
i=l 

P = r. + r,T + %$I rifl K . 

(2.8a) 

(2.8b) 

Here ti and ri are regarded as constants. 
For the appropriate values of the constants in our application the following combi- 

nations give rise to well-posed problems: Two out of p, W, Tare given at x = 0; T or p 
are given at x = L, and all Yi at x = 0. 

We check the conditions; p and T specified at x = 0, T specified at x = L. (This 
combination of boundary conditions is denoted (p, T, T) in what follows. Other 
combinations are denoted analogously.) For x = 0 we have p = pa, T = Tb , 
Yi = rib , i = I)...) N; i.e., 

&Al + pi?‘% -  pi?‘% -  5 %iAi+3 = pb > 

i=l 

Pd’h -t- Pd, - P,fl, = Tb > 

Ai+3 = Yib 3 i = I,..., N. 

If the equations are rearranged they will be of the type (2.5), since p1p4 - pzp3 is 
nonzero: 

&+, = rib , i = I ,..., N. 

For x = L we have T = to + tip + Cc, ti+lYi or 

4 = 
( 

to + (WJl - PJ 4 + (m - Pa) 4 

+ 2 C&+1 - tl%i) 4+3 CtlP2 - PA 
i=l )I 

where tl pz - p4 # 0. 
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Let us finally consider the parabolic equation (2.4b). The boundary conditions for 
that equation are: 

MO, t) 
4409 t)> ax - = C,(c(O, t) - T(0, t)), 

WL, t) 
44L, 0) ax = C2(4L, t) - w, t)), 

where C, and C, are constants. 
Since the boundary conditions for (2.4a) do not contain v we can solve for u and 

consider it as known when solving for a. Hence T(0, t) and T(L, t) are known in (2.9). 
The linearized form of (2.9) is of a well-known type which gives well-posed problems. 

3. THE NUMERICAL METHODS 

For a problem like this, which has only one space variable but consists of a large 
number of nonlinear and fairly complicated equations, a difference method is the 
most natural choice for the numerical approximation. Since the accuracy requirements 
are low and some of the data have low precision, a method of higher order than two is 
not appropriate. A dissipative scheme is necessary because the system is nonlinear. 
If those effects on the solution caused by the large eigenvalues d f (aZ2 + a32)1/2 of A, 
cannot be neglected, an explicit scheme should be used. The size of the time step must 
in any case be chosen = (d + (a2” + u~~)~/~)-~ h, where h is the space step. 

According to these considerations the Leap-Frog scheme with a fourth-order 
dissipation term is reasonable for the hyperbolic part of the system, and the Du Fort- 
Frankel scheme for the parabolic part. 

3.1. Dejinition of the Basic Method 

A mesh is defined by xj = jh, j = 0, I,..., J, h = L/J, and t n =: nk, n = 0, I,...; k 
being the time step. Grid functions are then defined at these grid points, e.g., Ujn = 
U(X~, t”). In order to be able to use centered difference operators when approximating 
(2.9), Uj” is defined also for j = - 1, J + 1. 

Using the form (2.3) of the differential equations, the approximation is defined by 

ujn+l zz 2kA(U,“) D,D$” + (I - S,h4(D+D-)‘) U,“--I 

+ 2kF(Ujn, vjn, rjn), j = 2,3 ,..., J - 2; (3.la) 

(I + 2ka(vi”)/h2) vjn+l = 2ku(v,“)(v;+,l - q-1 + v&)/h” + q-1 

+ 2kFa(iJj”, dn, Yin), j = 0, I,..., J; (3.lb) 

G(uFfl, rf+', ry+') = 0, j = 0, I,..., J; (3.lc) 
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D+Uj” = (U,“,, - Ujn)lh, 

D-Uj” = (Uj” - U;“_,)/h, 

D,Ujn = (i&T+, - Uj”_,)/2h. 

6, is a parameter, and we will see later how it can be chosen. Equations (3.1) must be 
completed with boundary conditions. At the points x1 , xJP1 (3.la) is changed so that 
a second-order dissipation term is substituted for the fourth-order one: 

uy = 2kA(Ujn) D,Ujn + (I + S,h2D+D-) U,“-1 

+ 2kF(Uj”, Z’j”, rjn), j= l,J- I. (3.2) 

The way of defining U:+l, U,“+’ is of course dependent on the boundary conditions 
for the differential equation, and as we have seen in Section 2 there are several ways 
in which those can be stated. Those variables, for which values are explicitly given at 
the boundary, are defined in the same way for the difference scheme. For the variables 
corresponding to the diagonal part (2.2b) of the system, one-sided difference operators 
are used both in space and time at the right boundary when w > 0 

yl;-’ = (Z $- kA,( U,“) D-) yJn + kFz( U,“, vJ”, rJn). 

The missing conditions for the variables corresponding to part (2.2a) of the system 
are defined analogously but with centered time differences. The reason for this is 
discussed later. 

vTl , I$+~ are determined by 

u(uon) D,,vOn = C&,” - To”), (3.4a) 

u(ujn) DOvJn = C,(v; - TJn). (3.4b) 

The solution P1 . 
Newton s methkd $m ” ““” 

J, to (3.1~) is obtained by a simplified version of 
9 It-cc rck) = rn+l 1: 

r!k+l) = rjk) - Diag 
3 

, , 
(3.5) r!O) = y.” 3 3 ’ 1 = [n/K]K; k = 0, l,...; j = 0, l)...) J. 

Diag[A] denotes the matrix where the off-diagonal elements of A are set equal to zero; 
[x] denotes “integer part of x,” i.e., the iteration matrices are updated every Kth time 
step. The reason for ignoring the nondiagonal elements is that for our application 
they are small compared to the diagonal ones. 
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Values at the first time level t = k are obtained by 

UJ1 = (I + kA( U,o) D,) Ujo + kF( Ujo, vjo, rjo), j = 1, 2,..., J - 1; (3.6a) 

vi1 = (Z + ka(vjO) D+D-) vjo + kF3(Ujo, via, rjo), j = 0, I,..., J. (3.6b) 

The boundary values are obtained as described above, except that one-sided time 
differences are used instead of centered ones. 

3.2. Accuracy of the Method 

The formal accuracy of the scheme (3.la) is second order, i.e., for smooth solutions 
U(x, t) the global error is O(kz + h2). The consistency of the Du Fort-Frankel 
scheme (3.lb) requires that k tends to zero faster than h does, since the error of the 
principal part au/at - aS2v/ax2 = 0 of the equation is 

k2 h2 
- Uttt - a ~z v,,~~ 6 + a ; vtt + 0 ($). 

As we will see later in this section the stability analysis of the hyperbolic part allows 
k/h = const. Formally this contradicts the consistency requirement above. However, 
in our application this is no limitation, since the coefficient a is very small. The spectral 
radius of A, (p(A)) in (3.la) is of the order 400, and a of the order 10b6, which makes 
the critical term in the error negligible. 

As mentioned above, the modified Newton’s method (3.6) is motivated by the 
strong diagonal dominance of (aG/ar&l. For our application the magnitude is of an 
order IO4 times larger for the diagonal elements than for the off-diagonal ones. 
Comparisons made with the full Newton method show a difference only in the fifth 
digit. Two iterations with (3.5) gave a sufficient accuracy. 

3.3. Stability of the Method 

The stability analysis of the approximation is carried out for the linearized system 
with constant coefficients (as for the differential equations in Section 2). A straight- 
forward calculation shows that the von Neumann condition for (3.la) is fulfilled if 

and 

6, < Q (3.7a) 

$ p(A) < min. 1 - 8S,04 
o<as1 20(1 - @)W * (3.7b) 

Equation (3.7b) is satisfied if, for example, 

&(A) < 1 - 86,. 
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the sufficient conditions 

61 -=c 1% 7 (3.7d) 

1 + (1 - 166,)1/2 
2 . (3.7e) 

See also [5]. 
The Du Fort-Frankel scheme (3.lb) is unconditionally stable for the Cauchy 

problem which is shown, e.g., in [6, Section 7.51. 
When including also the boundary conditions into the stability analysis, we make 

use of the theory in [4] and [S]. We first prove that the parabolic part is stable. 
Dropping lower order terms and considering the quarter-plane problem 0 < x < co, 
t > 0, we study the solutions to vt = au,, with boundary condition ~~(0, t) = g(t). 
The resolvent equation corresponding to the Du Fort-Frankel scheme is 

Z26j - * (Gj+l + Bj-1) - -$$6j = 0, j = 0, l,... (3.8a) 

where u = 2ak/h2. The boundary condition is 

6, - 6, = 2hg. (3.8b) 

The solution to (3.8a) which lies in I,(O, co) for 1 z 1 > 1, can be written 6, = AK’ 

where K S.&f& 

Z2K - + (K” + 1) - $$ K = 0, lKI <1 for /Zj >I. (3.9) 

Looking for eigenvalues, we put g = 0 in (3.8b) and get the condition K2 - 1 = 0, 
i.e., K = 31 for the existence of a nontrivial solution. Under the condition K = 1, 

1 z 1 > 1, (3.9) implies z = 1, and for this z value K = 1 is a double root of (3.9). 
Therefore 

K = 1 - c(Z - I)‘/’ + 07(1 Z - 1 I), c # 0, 

and we get from Eq. (3.8b): 

A(K2 - 1) = 2Khg 

which implies 

hlgl I X I G const l z _ 1 l1,2 , [ZI >l. (3.10) 

This is the stability condition of Varah [8]. 
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The other critical point is K = - 1, z = -1. This is not covered by Varah’s theory. 
However, stability proofs can be carried out also in this case if the condition (3.10) is 
changed to 

/XI < h’g’ 
1 2 + 1 11/z 

forallz-+ -1, 121 > 1. (3.11) 

This estimate is obtained in precisely the same way as (3.10) was obtained for K = 1; 

K = -1 is, therefore, a double root of (3.9) for z = -1. 
The h factor in (3. lo), (3.11) is lost at the error estimate, but since the truncation 

error (corresponding to g) is of the order h2, we obtain a second-order convergence 
rate. 

A stability analysis has not been carried out for the upper part (2.2a) of the hyper- 
bolic system. The motivation for choosing the boundary conditions as described in 
Section 3.1 is the relation between the system (2.4a) and 

0 1 
ut = 1 0 ua! - ( 1 

This relation is seen when carrying out the diagonalization of A in Section 2. The 
boundary conditions using centered time differences can be shown to be stable for 
(3.12), but not the ones using forward time differences. Numerical results confirm 
these arguments. 

For the lower diagonal part (2.2b) we have made an investigation with regard to 
generalized eigenvalues, and that analysis will be presented here since it might be of 
interest also for other applications. 

We consider the system yt = A,y, where A, = dI, d < 0. The resolvent equation 
corresponding to the difference approximation for each scalar equation is 

(z” - 1) 9i + z49j+l- 94 + %(9i+z - 49,+1 + 69j - 49~ + 95-J = 0, 
j = 2, 3,... (3.13a) 

where r = -kd/h > 0, 6, > 0. 
Considering first the boundary x = 0, we have the boundary conditions 

90 = go 9 (3.13b) 

(22 - 1) 91 + Zd92 - 90) - h(9, - 29, + go) = g, , 6, 2 0. (3.13c) 

The solution to (3.13a) can be written 9, = &KI + &KJ for K~ # Kg , where K~ , K2 

are roots to 

(Z” - 1) ~~ + ZTK(K2 - 1) + &(K - 1)” = 0, IKI <lforizj >l. (3.14) 
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Again we put g,, = g, = 0 and obtain the boundary conditions 

((2” - 1) K1 + 2T(K12 - 1 ) - 62(K, - 1)2} it, + ((Z” - 1) K2 + ZT(K,” - 1) (3.15) 

- S2(K2 - 1)2} h, = 0. 

Looking for generalized eigenvalues, i.e., 1 K~ 1 = 1, / z 1 = 1, it is sufficient to in- 
vestigate the case K~ = 1 since the scheme is dissipative. 

Corresponding to K1 = 1 there are two z values; z = f 1. Under the condition 
] K~(z)I < 1 for I z 1 > 1 the only z value is z = - 1, and therefore the condition for 
a nontrivial solution is 

T(K2” - 1) + s,(K, - 1)2 = 0, /Kg/ < 1 for 121 > 1, 

i.e., 
6, - T 

K2 = 6, + 7 ’ 

We put z = -1 in (3.14), divide by (K - l), and put K = ~~ . This gives 

-TK2(K2 + 1) + &(K2 - 1)” = 
-2T6,(6, - T) 

(6, + T)” - (8;Sf:)3 = ’ 

which is equivalent to the condition 

T2 s23 = 
6, - 46, 

for 6, # 46, , 
(3.16) 

6, = 6, = 0 if 6, = 46,. 

Since 7 is arbitrary in the interval 0 < T < 1 we must choose 6, such that one of the 
conditions 

62 <.I, (3.17a) 

s,3 3 6, - 46, (3.17b) 

is fulfilled. 
(6, = S, = 0 gives the usual Leap-Frog scheme which is stable, [4].) 
We now check for multiple roots K~ , i.e., a solution with the form jJj = (h, + 

$I,) ~~j. The boundary conditions now imply 

A, = 0, 

{(Z” - 1) K~ + ZT(K12 - 1) - S2(~1 - 1)2} h, + ((z” - 1) K~ + ZT * 2~,~, (3.18) 

- S,(2K12 - 2K1)} x2 = 0, 
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and the condition for a nontrivial solution with z = - 1, K~ = 1 is T = 0, which is a 
contradiction. 

We have not checked the possibility of an eigenvalue z = z, , [ z, 1 = 1 1 K~ [ < 1, 

1 K2 [ < 1 which is more difficult to do. However, in that case we permit an estimate 
j hi / < / z - z,, 1-l (I g, I + 1 g, I) (cf. Theorem 10.3 in [4]). To violate this condition, 
there must be a z0 such that the determinants in (3.15), (3.18) vanish for z = z, , and 
furthermore the terms of order I z - z0 I li2 and j z - z0 j must cancel. This is very 
unlikely but has not been checked. The case j z0 1 > 1 has not been treated 
theoretically. However, this type of eigenvalue shows up as an instability after a few 
time steps and this has never occurred. 

To simplify the notation when analyzing the boundary conditions at x = L, we 
study the same quarter-plane problem as above, but with d > 0. No boundary 
conditions are then given for the differential equation at x = 0. The condition for the 
Ai : s now will be 

{Z - 1 + T(K1 - 1)) A1 + {Z - 1 + T(K2 - I)} h, = 0, 

((Z” - 1) K1 + ZT(K12 - 1) - a2(K1 - 1)2} h, + {(Z” - 1) K2 -j- ZT(K2’ - 1) (3.19) 

- 6,(K, - I)“} x2 = 0. 

Since z = -1 for K1 = 1 we arrive at exactly the same condition (3.16) as in the 
previous case, 7 now lying in the interval - 1 -=c 7 < 0. This is also true for the case 
K1 = K2, and we get no new restriction. 

It should be noted here that with the boundary condition 

y$+:’ = 2kd D- y,” - y;-;’ (3.20) 

the coefficient for A, in the first equation of (3.19) will be z2 -- 1 + 2TZ(K1 - l), 
which vanishes for z = - 1, K~ = 1. Therefore we will have an instability for all 
6, 3 0, 6, 3 0. 

3.4. The Use of Different Time Steps for Different Equations 

Due to the complexity of the system, in particular the lower order terms, a large 
number of arithmetic operations must be carried out for each point and every time 
step. For stability reasons the time step must be chosen very small, since p(A) in 
Eq. (3.7b) is large. This causes the computing time to be very long. In this section we 
will describe a faster version of the program, where different time steps are used for 
different equations in the system. We have also approximated parts of the functions 
& by piecewise linear functions. 

The matrix A of the hyperbolic part of the linearized system (2.3) has the form 

sS1127/3-2 
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In our application the spectral radius of A, is less than 3 % of that of A1 . Since the 
lower hyperbolic part (2.2b) does not contain U, terms, it is therefore possible to use 
longer time steps for advancing y. 

Let k, be the time step for u and k, = Mk, the time step for y and v, where M is a 
positive integer, With II denoting the time index in the coarser ,grid and Mn + v the 
time index in the finer one, the numerical scheme takes the following form: 

UMn+v+l = 2,Q&(UMn+V , jjMn+v) D&fn+v + B(@n+v, jjMn+u) &jjMn+~ (3.21a) 

+ (I - 6,h4(D+DJz) uMn+“-’ + 2k$?+“, v = 0, l,..., M - 1; 

yn+l = 2k2A2(uMn, y”) D, y” + (1 - 6,h4(D+DJ2) y”-l + 2k2Fzn; (3.21b) 

(I + 2k2a(vi”)/h2) v;” = 2k2a(vjn)(rT;, - q-1 + v,“_,)/h” 

+ q-’ + 2k2F;; ; (3.21~) 

G(u M(?a+l) , yn+l, zP+‘, P+‘) = 0, n = 1, 2,.... (3.21d) 

(The space index j is deleted in (3,21a, b, d)). The vector gMn+” denotes the inter- 
polated value 

jW+v = y" + y( yn+l - yn)/M. 

The vector valued function py+v denotes the extrapolated value 

I;ilMn+v = (1 + e?-) F#fn, y", v", /.n) - $ F@'(n-l), y-1, v-1, f-1). 

Note that Fl itself is extrapolated, not its arguments. This is of great importance for 
saving computing time, since now Fl need not be evaluated for every small time step. 

Equations (3.21) have all the same space step h, and the space index j runs over 
interior points as in (3.1). The necessary modifications in the boundary conditions 
are exactly analogous to the changes in the difference equations for the interior points. 

The starting procedure is identical to (3.6) but with the use of different time steps. 
The first time steps in the inner loop for u (n = 0, v = 1, 2,..., M - 1) are treated as 
in (3.21a), but with p1 defined by 

& = F&O, y”, v”, r”). (3.22) 

If M is regarded as a-fixednumber independent of hand k, , the scheme is stillof second- 
order accuracy. The approximation (3.22) which is only first-order accurate, is used 
only M - 1 times and hence, it does not destroy the global accuracy. 

As for the original method we disregard the lower order terms in the stability 
analysis. Then the lower part (3.21b, c) of the difference equations does not depend on 
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the vector U, and can therefore be treated separately. Equation (3.21~) is uncondi- 
tionally stable, and the stability condition for (3.21b) will be 

/c,~(~(A,))~ < h2(1 + (1 - 16Q19. (3.23) 

We can now consider y and v as known functions in (3.21a). The additional stability 
criterion therefore is 

k12(p(Al))2 < h2(1 + (1 - 166,)lj2). (3.24) 

Of course the condition (3.7a) must also be fulfilled together with the conditions 
(3.17). 

The truncation error for (3.21b, c) naturally grows with increasing M. For the 
practical choice M w &4,)/&t,) this change in accuracy is negligible according to 
numerical experiments over short time intervals. 

We have also approximated parts of the functions& by piecewise linear functions 
of T. Table 3.1 shows the significant gain in computing time with this technique. We 
cannot hope to get a more efficient scheme by a further optimization since the com- 
puting time is only twice as long as for the reduced system obtained when y and v are 
deleted. 

3.5. Treatment of Stiff Equations 

In some applications af2/av and afs/aT are negative and large in magnitude. This 
makes the system stiff. Some components in the solution of the differential equations 
decay very fast with time. Our scheme with centered time differences is badly suited to 
deal with stiff equations (see [2]). The solution contains error components of the form 
(- 1)” ect, c > 0. These strong oscillations with time are shown in Fig. 3.1 (L - F). To 
overcome this difficulty the scheme can be changed so that the stiff terms are treated 

TABLE 3.1 

Computing Time in Seconds for 0.1 set of Physical Time t@ 

A. Basic method @lo rs1 
B. A with simplified functions 280 

C. B with different time steps 40 
D. C with fi and fs extrapolated 26 

E. C with implicit treatment off, , fs 140 

F. Reduced system (first three equations only) 14 

“h = 2.2 x 10-a, k, = 4.0 x 1O-6, M = 21. 
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FIG. 3.1. The temperature Tat x = 0.1 as a function of time for the two methods. L - Fdenotes 
the scheme from Section 3.1, L - F(C - N) the scheme described in Section 3.5. Boundary condi- 
tions: (w, 7, T) (for notation see Section 2.2) h = 0.028, k, = 0.49 x 10-5, k, = 0.1 x lo+‘, 
6, = 0.04, a2 = 0.16. 

as in the Crank-Nicholson scheme [6, Chap. 61, i.e., in (3.21a) 2py+” is substituted 
by 

j7&Mn+v-l, yMn+v-1, EMn+v-1) + E;(UMn+v+l, 3Mn+v+l, ~Mn+v+l) 

where 

tPfT1+” = (1 - v/M) ZP + vv”+l/ikf. 

The nonlinear equations obtained are solved by Newton’s method. In Fig. 3.1 it is 
seen that the oscillating error components mentioned above vanish with this implicit 
technique (L - F(C - PI)). 

4. NUMERICAL EXPERIMENTS 

In this section we will present results obtained from calculations based on the 
method given in Section 3.4. We will concentrate on the effect of dissipation. Initial 
and boundary values, parameters, and functions are specified in [3]. 

As mentioned in Section 3 the dissipation term was added to the ordinary Leap- 
Frog scheme to prevent oscillations in the solution. The necessity of this term is 
clearly illustrated by Fig. 4.1. (The notations from Sections 2 and 3 are used.) In the 
nondissipative case presented there, the oscillations increased rapidly with each step 
and the solution degenerated completely. 

For this short time the boundary dissipation does not make any essential difference. 
In Fig. 4.2, however, we see how the lack of boundary dissipation causes oscillations. 

The solution T develops a discontinuity near the boundary x = 0, and at a later time 
this effects the velocity w. In the case 6, = 46, the solution is smooth over long time 
intervals. 
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0.0 0:r II 

0 +I 

6.30 
0xCml 0.0 .! I! 

FIG. 4.1. The velocity w as a function of x for different dissipation coefficients. h = 0.022, 
k:= 0.2 x 10-4, n = 350, I = 0.007. Boundary conditions: (w, T; T). 

TI*Kl wh/s 
494.0 4 

0.0 0.1 L 

FIG. 4.2. The velocity w and temperature T as a function of x with dissipation coefficients 
6, = 0.02, 6, = 0.0. h = 0.032, k = 0.6 x lo-*, t = 0.090. Boundary conditions: @, T; T). 

The instability introduced by the wrong extra boundary condition (3.20) for the 
vector y is very weak. The use of wrong time differencing in the boundary conditions 
for u is more severe. 

This stronger instability for Eqs. (2.2a) than for (2.2b) can depend on the fact that 
A, has both positive and negative eigenvalues. The error is in this case reflected back 
and forth between the boundaries and amplified each time. 

Another possible error source could be the numerical solution of the nonlinear 
equations (2.2d) as described in Section 3. However, the special technique using a 
diagonal iteration matrix two times enters no errors of practical importance. Test runs 
with the full Newton method and many iterations effected only the fourth digit in the 
solution. Finally, Fig. 4.3 shows the solutions for different types of well-posed bound- 
ary conditions. 
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6.675- 

(f’,T;T) 

6.605- b?T;P) 

6.50 
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I D 
0.0 0.1 L xcml 

FIG. 4.3. The velocity w as a function of x for different boundary conditions: h = 0.022, k = 
0.4 x 10-4, n = 390, I = 0.015, 6, = 0.02, 6, = 0.08. 
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